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In this work, a ray theory approach is used to examine the propagation of sonic

booms through a turbulent ground layer, and to make predictions about the

received waveform. The rays are not propagated one at a time, as is typical in ray

theory; instead, sufficient rays to represent a continuous wave front are

propagated together. New rays are interpolated as needed to maintain the

continuity of the wave front. In order to predict the received boom signature, the

wave front is searched for eigenrays after it has propagated to the receiver.

OVERVIEW

• Rays describing a wave front propagate
through an instantaneous "snapshot" of the
turbulence.

• Turbulence produces focusing and defocusing
of portions of the wave front, which results in
caustic formation, wave front "folding", and
multiple eigenray paths to the receiver.

• The eigenrays to the receiver are identified.

• The respective arrival times and ray tube
areas of the eigenrays, along with the
Identification of caustics, generate
the predicted waveform at the receiver.

• If repeated many times, this generates a
statistical description of the predicted wave
form characteristics.
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The Comte-Bellot turbulence model (Ref. 1) is used to generate an instantaneous
"snapshot" of the turbulent field. The transient acoustic wave is assumed to be
sufficiently short in duration such that the time-dependance of the turbulent field
may be neglected.

Turbulence Model
(Comte-Bellot '91)

Instantaneous realization of Incompressible,
isotropic turbulence is represented by a sum of
Fourier modes:

N

w(x) = Z aj cos(kj.x+ ¢)
j=l

where directions of aj and kj are random with
the provision that

(aj.kj) = 0 for each j

For a given mode kj, the magnitude lajl is given
by

lajl - _E(k) _Sk

5k is the separation between modes.
The spectral energy density E(k) is given by the
Von Kdrmdn model:

ld

E(k) - (k2 + ]_]lV/6 exp(-2.25 (qk) 4/3)

Lo2)
L0 = integral length scale

1] = Kolmogorov scale

The magnitude of the rms velocity is related by
N

1 _lal 2Ivrmsl - _.
j= 1
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In this model, we use60 Fourier modes logarithmically distributed between

wavenumbers 10 .2 and 10 (m-l). The integral length scale was chosen to be

100m, as was the thickness of the turbulent layer. The rms wind velocity was

chosen to be 1 m/s. This corresponds to a mild turbulent layer, such as might be

found in the morning on a clear day. These values are used for all of the

remaining figures and discussions.

I/d

Turbulent layer Energy Spectrum
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Lo = 100 m 11= 0.01 m

Vrm s = 1 m/s

Used 60 modes, from k = 0.01 to 10 m -1
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A number of rays, with the same starting conditions, are propagated through

different realizations or "snapshots" of the turbulent field. Each ray will be

displaced by the turbulence away from the undistorted ray path, which in this case

would be represented by a horizontal line.

Ray Paths
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• Each ray represents a different realization of the

turbulent layer.

• The turbulence displaces each ray from the

horizontal (undistorted) ray path.
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If a large number of rays are propagated through different turbulence realizations,

a pattern or distribution of ray displacement may be developed. In our case, 95%

of the rays fall within a circle of radius 2 meters around the zero-turbulence ray

path. By symmetry arguments, this means that any eigenrays have a 95%

probability of starting within 2 meters of the zero-turbulence eigenray. This

statistical approach allows us to drastically reduce our eigenray search area to a

feasible quantity.

Ray displacement distribution after 100 m propagation
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• 95% of the rays fall within a circle of radius 2 m
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The development of the ray tube area along the ray paths gives an indication of

how much the turbulent field is distorting the wave fronts. A ray crossing the

horizontal as indicates that the ray has passed through a caustic at that point.

Ray tube areas
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• Each ray represents a different realization of the

turbulent layer.

• Crossing the horizontal axis indicates that the ray
has encountered a caustic.
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In this figure, a linear "slice" of a wavefront is propagated through 100 m of

turbulence. In this case, the distortion is slight and no caustics are observed.
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Again, a linear "slice" of the wavefront is propagated through a realization of

turbulence. Although the statistical parameters are unchanged, in this case, the

turbulence has a marked effect on the wavefronts. After 20 m, caustics begin to

form which eventually overlap, producing, in the end, a highly folded wave front,

with multiple eigenrays to the receiver.
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It must be remembered that the wavefront distortion is three-dimensional. The

two plots below show the distortion of the original wavefront "slice" in the

previous two figures, show in the plane normal to the direction of propagation.

Note that the second figure shows considerable distortion due to the presence of
numerous caustics.
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For four realizationsof theturbulentfield, thewavefrontswerepropagated,
eigenrayswerefound,andtheresultantwaveformswerecalculated.Theinitial
waveformwasgeneratedby theZEPHYRUSmodel (Ref.2); it representsa
typical sonicboomwaveformin theabsenceof turbulence.Thenext two plots
demonstratetheresuhingwaveformswhenthewavefront is spreading,or
defocusing,andwhenthewavefront is focusing,but hasnot formedacaustic.
Thelastplot displaystheU waveresultingfrom multipleeigenrays,someof
which havepassedthroughoneor morecaustics.
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In nonlinear geometric acoustics, the effects of self-refraction may usually be
ignored. Although nonlinear effects may displace a ray from the small-signal ray
path, the properties of the wave front is usually slowly varying in the plane of the
wave front and so, the equivalent nonlinear wave front is virtually identical to the
original. As we've seen, however, in the case of propagation through turbulence,
we've seen that the wave fronts may become very distorted and so the assumptions
that lead to neglecting self-refraction must be examined more closely. This is
most easily tested by comparing the same ray with and without the nonlinear
correction. We first start with the nonlinear ray path equations given below.

Nonlinear Ray Equations

The ray path equations may be modified to include self-
refraction as follows:

dx

dt -
p /

-- - (W + u') + (1- W.p- UV.p)]

+ -Jv /
u,),_j c Fax_/ P'a'_ q+

- (1- W-p- u .p) .]

where

a=(_-1)Co
Po

p is the slowness vector
P' and u' are the acoustical overpressure and

particle velocity
and V' is the spatial operator in retarded time

coordinates:

V'= V+Po _
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The simplest wave front property to calculate is the ray tube area. When we

compare the results for a number of different turbulence realizations, we see that

the ray tubes with and without the nonlinear correction give almost the same

result. This indicates that, for these environments, the wave fronts remain

sufficiently smooth that we may continue to ignore the effects of self-refraction.
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Ray tube area

• Initial 200 Pa acoustic overpressure

• The nonlinear correction to the ray paths
makes little difference.
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Theray theoryapproachhasbeendemonstratedto beausefultool for the
investigationof propagationthroughturbulence.Thenextstepwill likely be to
attemptpredictionfor moresevereturbulence,to seeif waveformsof more
complexstructurethathavebeenobserved,suchasmultiply peakedor rounded,
canbesimulatedbythis method.
It is fortunatethatthenonlineardistortionof theray pathsmaybeneglected,as
thissimplifies thegoalof sonicboomprediction.

Conclusions

• A ray theory approach provides a useful
tool for Investigating the properties of
propagation through turbulence.

• Wavefront folding and multiple eigenrays
are good candidates for explaining some
of the structure commonly observed
in sonic booms.

• Nonlinear distortion of the ray paths may
be safely Ignored.
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